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Abstract

Fabrication of multifunctional hemostats is indispensable against chronic blood
loss and accelerated wound healing. Various hemostatic materials that aid wound
repair or rapid tissue regeneration has been developed in the last 5 years. This
review provides an overview of the three-dimensional (3D) hemostatic platforms
designed through the latest technologies like electrospinning, 3D printing, and
lithography, solely or in combination, for application in rapid wound healing. We
critically discuss the pivotal role of micro/nano-3D topography and biomaterial
properties in mediating rapid blood clots and healing at the hemostat-biointerface.
We also highlight the advantages and limitations of the designed 3D hemostats. We
anticipate that this review will guide the fabrication of smart hemostats of the future
for tissue engineering applications.

Keywords: Multifunctional hemostats; Wound healing; Micro/nano-3D topography;
Hemostat-biointerface; Tissue engineering

1. Introduction

Bloodlossassociated with surgical procedures, trauma, or injuries can belethal depending
on the extremity of the damage!". Conventional hemostatic techniques, such as suturing
or cotton gauzes, are inefficient in achieving rapid hemostasis. Therefore, developing
efficient hemostatic platforms is crucial to advancing healthcare and medicine. Several
hemostatic agents have been developed, including hemostatic powders, scaffolds, and
patches, for patient care. Most hemostat were developed based on some of the standard
guidelines to achieve perfect hemostat properties. These hemostat properties include
rapid hemostasis, ready-to-use ability, user-friendliness, lightweight, and durability'.

Among the modern hemostats, multifunctional three-dimensional (3D) micro/
nanohemostatic constructs have proven effective in numerous medical conditions,
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like in cases where blood loss is associated with severe
tissue damagel. Such severity often demands enormous
tissue regeneration or repair following blood clots,
which can be effectively managed by multifunctional
3D hemostats. Micro/nanostructure-enabled hemostat
availability is favorable for clinical use because these
novel agents have shown excellent inherent biomimetic
properties following the body’s natural wound healing
process®l. For instant, fabricating hemostatic agents
capable of inducing angiogenesis, immune responses,
and desired signaling pathways following blood clotting
might serve as an effective hemostat”®'".. Another reason
why micro/nanostructured hemostatic agents have
gained popularity is because of their ability to respond
to intracellular and extracellular stimuli through their
physical architecture®. Their architecture allows them
to adapt quickly, closely connecting the structural and
functional aspects of the biointerface. Additionally, when
fabricating multifunctional 3D hemostats, characteristics
such as desired topography, biocompatibility, mechanical
stability, biodegradability, and antibacterial properties are
fundamental properties under consideration, for which
surface modification has shown excellent outcomes!'!l.
Because of this, choosing materials with biocompatible
and anti-infection properties should be heavily considered
when designing micro/nanostructures for rapid hemostasis.
However, it is more advantageous to select materials and
use fabrication techniques most appropriate to the needs of
the individual based on the specific condition at hand™>¢l,
Hence, innovation in the fabrication and use of 3D micro/
nanohemostats is necessary for improved medication.

Current technologies allow us to fabricate these
structures via extrusion methods, electrospinning,
soft lithography, stereolithography (SLA), digital light
processing (DLP), 3D/4D printing, and combined methods
to create hemostats with excellent biocompatibility, zero to
low cytotoxicity, long-term stability, antibacterial activity,
and among others!”].

Thus, this paper aims to review the multifunctional 3D
platforms, which are designed using advanced fabrication
techniques, for rapid hemostasis and wound healing.
It also aims to interpret the relevance of 3D micro/
nanotopography in the functional prospect at the wound-
implant interface. We anticipate this work will provide
valuable information to develop future innovations
concerning smart hemostats for biomedical applications.

2. Mechanism of wound healing and
hemostasis

Each hemostat’s mode of operation is determined by the
degree of intrinsic variation in the material’s physico-

chemical configuration, which regulates the natural
course of the wound healing process. The natural wound
healing process occurs in various overlapping stages,
including hemostasis, inflammation, proliferation, and
remodeling (Figure 1A). Each stage requires extensive
communication between different cellular constituents
of various compartments of the skin and its extracellular
matrix (ECM)!"), creating a dynamic and complex
environment caused by the activation and influence of
different signaling pathways of the coagulation cascade on
each other. Interruption or deregulation of one or more
overlapping phases may lead to non-healing (chronic)
wounds in the wound healing process. Thus, the efficient
design of functional micro/nanostructures to accelerate
the physiological process of hemostasis is essential’’; and
elucidation of the body’s natural hemostasis mechanisms,
such as the natural blood coagulation cascade, is imperative
for the fabrication of effective hemostatic agents®”. The
body’s priority after an injury is to stop blood loss. The
fibrin clot stops blood loss while trapping inflammatory
cells like neutrophils, monocytes, macrophages,
Langerhans cells, dermal dendritic cells, and T cells, among
others??. The closure of the inflammatory phase follows
the onset of angiogenesis, which involves endothelial cell
proliferation, activation of pericytes, migration, and neo-
blood vessel formation. While neo-angiogenesis prevails,
fibroblasts proliferate and deposit ECM, indicating the
growth stage of the healing tissue?*). Re-epithelization
occurs simultaneously, involving the proliferation of both
unipotent epidermal stem cells and de-differentiation
of terminally differentiated epidermal cells®?. Re-
epithelialization also involves the reconstruction of all skin
appendages, including the formation of sebaceous glands,
sweat glands, and hair follicles.

2.1. Cellular and molecular mechanisms of
physiological hemostasis

Hemostasis marks the first stage of wound healing,
including vasoconstriction, primary hemostasis, and
secondary hemostasis. The key factor in hemostasis is
the platelets, while the critical matrix component is the
fibrinogen. A healthy endothelial cell monolayer in an
unruptured blood vessel prevents the platelets’ untimely
activation, thereby preventing their adhesion to the vessel
wall or clumping among each other. Vasoconstriction
and formation of a fibrin clot in the bleeding site prevents
blood loss after injury. The clot is formed from the
adherence and aggregation of platelets. The generation
of fibrin is then established from the activation of
prothrombin to thrombin, where thrombin cleaves
fibrinogen to form fibrin. A blood clot is followed by
primary and secondary hemostasis. Primary hemostasis
involves platelet aggregation and platelet plug formation
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Figure 1. Schematic representation of (A) the stages of wound healing and (B) the hemostasis.

elicited by collagen exposure within the subendothelial
matrix. The platelet plug and the fibrin mesh combine
to form the thrombus, which stops bleeding and releases
complement and growth factors, forming a template for
successive wound healing®!. Secondary hemostasis refers
to the activation of the coagulation cascade where soluble
fibrinogen is converted to insoluble strands that make up
the fibrin mesh.

2.2.Vasoconstriction

Following injury, vasoconstrictors, such as endothelin,
trigger the reflexive contracture of vascular smooth
muscle, eventually reducing bleeding at the ruptured
microvasculature. Besides, growth factors released
from injured cells also promote vasoconstriction. These
include catecholamine, epinephrine, norepinephrine,
and prostaglandins. Growth factors like platelet-derived
growth factors activate the mesenchymal cells, causing
contraction. The initial reflexive constriction of the blood
vessel might resume, resulting from local hypoxia and
acidosis. The long-term clotting is thus realized by the
downstream components of the coagulation cascade.
This includes bradykinin, fibrinopeptide, serotonin, and
thromboxane A *.

2.3. Primary hemostasis

Primary hemostasis is significantly regulated by the platelets,
which are anucleate cells budding from megakaryocytes. The
platelets circulate close to the endothelial cells. Following an
injury, the thrombogenic subendothelial matrix is exposed.
The exposed surface attracts the bonding of the platelets
through their G-protein-coupled receptors. This activates the
signal transduction cascade that causes integrin activation.
Increased integrin activation leads to the platelets’ attachment
to other platelets and the surrounding ECM. The signal
transduction cascade leads to the change in the conformation
of actin filaments. Changes in the actin conformation
transform the disk-shaped dispersed platelets into a round
structure, eventually forming pseudopodia and lamellipodia.
The formed appendages then attach firmly to ECM,
mechanically sealing the blood vessel. Moreover, intracellular
granules in platelets secrete numerous active substances, such
as adenosine diphosphate, serotonin, calcium, and histamine,
that are required for platelet activation and primary and
secondary hemostasis™!. The release of platelet factors is the
most intense within the first hour of platelet activation, which
can continue up to 7 days, resulting in a paracrine effect on
other cell types, including smooth muscle cells, endothelial
cells, monocytes, and fibroblasts®***!.
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2.4. Secondary hemostasis

Platelets are the templates for the assembly and activation of
coagulation complexes. The coagulation pathways involved
usually is classified as intrinsic and extrinsic pathways.
The exposure of the subendothelial matrix activates both
the pathways, which leads to the activation of factor X.
Following the activation of factor X, the prothrombin is
converted to thrombin which cleaves fibrinogen to fibrin.
Factor XIII then covalently crosslinks fibrin, which binds
the aggregated platelet forming the secondary hemostasis,
also known as the thrombus. The thrombus then serves as
the wound matrix for infiltrating other cells until wound
healing”®. The various stages of wound healing and
hemostasis are illustrated in Figure 1B.

3. Structural and functional prospect of
biomaterial at biointerface

Rapid promotion of hemostasis and subsequent
biomimetic wound healing is possible via different micro/
nanostructures®**. These structures include nanotubes,
nanofibers, and micro/nanoparticles. Although the
hemostatic mechanism of nanotubes have not yet been
fully elucidated, they have been utilized as hemostatic
agents for thousands of years in traditional Chinese
medicinal applications®**. However, it has been recently
discovered that nanotubes fabricated for rapid hemostasis
have a high structural aspect ratio and surface area.
Owing to this, hemostasis proceeds via plasma or fluid
interaction through one of these mechanisms: (i) efficient
water absorption, leading to material concentration; (ii)
factor XII activation within the intrinsic coagulation
cascade, which in turn causes ionic bonding of amino
acids; or (iii) the formation of a physical barrier that stops
further hemorrhage. The mechanism of hemostasis varies
depending on the structural aspect associated with the
type of materials used in their fabrication, but micro- and
nanofibers tend to operate through a similar mechanism.
Molecules are self-assembled into a micro/nanofiber
mat-like structure, leading to improved platelet binding.
This micro/nanofiber mat promotes blood clot formation
by accelerating fibrin, platelet, and red blood cell (RBC)
coagulation on the material’s surface. Micro/nanoparticles,
including micro/nanospheres and adhesive powders/gels,
are small and feature a high surface area. Although the
molecular mechanism for micro/nanoparticles is not yet
well understood, we can confirm that there is a promotion
of blood cell and platelet aggregation on the surface of the
micro/nanostructures due to physical factors of incurred
water absorption and consequent swelling. Some micro/
nanoparticles induce rapid hemostasis through liquid
absorption in the formation of an in situ hydrogel. This
absorption leads to the concentration of blood cells,

platelets, and other coagulation factors, thus creating a
physical barrier to stop further hemorrhage. Due to the
inherent dynamic properties of all micro/nanostructures,
both can create a suitable 3D microenvironment to support
cell activities, such as adhesion, growth, and differentiation,
for biomimetic wound healing and effective hemostasis
modulation"*?), Some unique micro/nanostructures and
their hemostatic mechanisms are summarized in Table 1.

Therefore, to effectively represent the spatiotemporal
functionality of the target tissue’s dynamic environment,
micro/nanostructure design for hemostasis requires a
conscientious selection of fabrication materials and close
attention to its architectural constitution in addition to the
inherent physical and biochemical properties*..

3.1. Structural modulation

The micro/nanostructures in hemostats accelerate the
onset of hemostasis through multiple mechanisms,
including rapid blood absorption, faster blood clot
formation, and altered cell dynamics and behavior!**l.
Microproperties of a hemostatic agent can be tuned
depending on the manufacturing technique used to shape
the materials used for its fabrication. For example, cell
anchorage is a defining characteristic that can be tuned
in scaffolds for hemostasis via microstructures. This
tunability is crucial to hemostat functionality because cell
anchorage to the scaffolds via microstructure interaction
can promote cell adhesion, facilitating the mediation of cell
morphology and subsequent differentiation. For example,
topographical features such as pillar height have proven
relevant in affecting traction and reaction force upon cells
when subject to lateral displacement, which directly affects
cellular attachment and subsequent behavior (Figure 2A).
Physical properties, such as stiffness and elasticity, have
also been proven to affect cell morphology by altering the
cytoskeletal organization and contractibility, guiding stem
cell differentiation into specific lineages!**’.

3.1.1. Microscale structures

Polymeric microstructures with rough and random pores
(~5-10 um) are promising topological attributes that
facilitate interfacial interaction between RBC and the
hemostat leading to rapid RBC aggregation (Figure 2B).
These microstructures often act as molecular sieves
that absorb water in the blood and concentrate RBC
promptly!7*¥. Microscale structures are also favored in
the fabrication of on-demand hemostatic microbots. The
micropatterns in the hemostat are often loaded with drug
materials to make them effective drug delivery vehicles
for rapid blood clotting. Furthermore, the microstructure
pattern mediates drug delivery for hemostasis
spatiotemporally with stimuli-responsive materials. These
microstructure-oriented systems can be controlled via
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Table 1. Structural properties of fabricated micro/nanostructures in hemostatic applications

Hemostat fabrication process Type of micro/

nanostructure

Structural properties

Mechanism of hemostasis References

3D/4D printing, electrospinning, Nanotube

High structural aspect ratio

Plasma interaction 155]

extrusion methods, stereolithography

High surface area .

Plasma interaction 39.61,156]

o Fluid adsorption

3D/4D printing, electrospinning, soft ~ Micro/nanofiber

lithography

Small diameter .

Physical mesh-like hemostatic =~ 1157160

barrier
« Platelet interaction
o Plasma interaction

High structural aspect ratio ~ »

Platelet entrapment [7.60.90,161-164]

+ Red blood cell entrapment

« Blood component entrapment

+ Mechanical strength inhibits
blood loss

« Platelet adhesion

High surface area .

[7,37,161-163,165-167]

Drug delivery agent

o Platelet adsorption

 Plasma adsorption

« Red blood cell adsorption

o Fluid adsorption

« Intrinsic pathway activation
promotes plasma coagulation

3D/4D printing, electrospinning,
digital light processing

Micro/nanoparticle,
Micro/nanosphere,
Adhesive powder/gel

Small size

[140,168-171]

o Drug delivery agent
« Tissue adhesion

o Platelet adsorption
o Plasma adsorption

High surface area .

[131,172-175]

Drug delivery agent

o Platelet adsorption

« Plasma adsorption

« Plasma coagulation

+ Red blood cell adsorption

« Ion-induced platelet activation

user-defined release kinetics using temperature, pH, and
light stimuli, among others'**). Some popular release
systems for this purpose include the programmed delivery
of one or multiple compounds necessary to promote rapid
hemostasis, such as fibrinogen and thrombin’.

Coagulation experiments have determined that
composite microparticles can both reduce the bleeding time
and accelerate coagulation rates, in addition to having the
ability to be used in combination with hemostatic adhesive
powders/gels, such as chitosan-based composites!*!.
Microparticles inlaid in scaffolds allow for targeted delivery
of erythrocytes to decrease clotting time®!. Microspheres
with morphologically relevant surface structures, such as
“macropits” or “craters,” enhance hemostasis by promoting
fluid absorption. The increased fluid absorption rate
and ratio both incur rapid hemostasis and subsequently
decrease the size of the wound areal. In addition, the
surface roughness of microscale structures is proportional
to faster coagulation rates and increased strength due to

the promotion of blood cell aggregation that this surface
roughness permits!'”*3. Microspheres can also strengthen
the hemostat’s intrinsic properties, allowing rapid blood clot
formation and enhanced adhesion to cells and tissuel** ¢,
Adhesive microgels are powdered microstructures and
feature a high surface area. They induce rapid hemostasis
through liquid absorption, forming an in situ hydrogel.
These microgels lead to the concentration of blood cells,
platelets, and other coagulation factors, thus creating a
physical barrier to stop further hemorrhage®.

3.1.2. Nanoscale structures

At the nanoscale level, surface biochemistry instructs
cell behavior by directly mediating the cell-material
interactions or initiating surface receptor activation.
Nanostructures function as mediators in modulating
biochemical cues, such as activating growth factors
and proteins. Additionally, these nanostructures can
alter communication between cells and the fabricated
scaffold to induce a more rapid biochemically activated
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Figure 2. Effects of structural modulation on cell behavior and response. (A) Micropillar arrays of different diameters and morphologies affecting cell
adhesion and actin orientation!®!#!l. (B) Chitosan-based porous wound dressing with excellent hemostatic properties®!l. (C) Hemostatic evaluation of a

CNF gauzel®”..

hemostatic responsel®®. Nanotopographical cues are
among the most critical factors which help to mediate
cell adhesion, mainly through the interactions between
proteins and ECM"®.. Thus, controlling these interactions
via topographical features can synergistically improve cell

behavior. One example of the topographic modifications
on the nanoscopic scale comes from a study by Nouri-
Goushki et al.l’. This study revealed that the design of
specific 3D-printed surface-modified surface grooves
and nanopatterns directly affects cell adhesion forces,
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cytocompatibility, cell adhesion, morphology, elastic
modulus, and the subsequent cell behavior®l.

Nanofibers are often fabricated to make composite mats
that activate intrinsic and extrinsic coagulation pathways,
thus entrapping blood cells and platelets through a
physiological mechanism. They can also be promotors of
self-assembling peptides in forming a physical barrier to
reduce hemorrhage through a physical mechanism!*,
Recent studies have incorporated carbon nanofibers
(CNFs) into gauzes to promote hemostasis. When these
plaster-like gauzes patch onto incisions on a rat’s back, the
control cotton gauze gets wet quickly, while the CNF gauze
prevents blood loss. Three minutes later, the CNF gauze
helps form a gel-like clot, properly sealing the wound,
while an open wound remains under the control gauze
(Figure 2C).

Nanotubes exhibit a hollow tubular structure, making
them easy to immobilize on polymeric matrices like
chitosan or cellulose. This property further adds to their
biocompatibility and hemostasis through an extensive
hydrogen-bonding network for improved functionality'®!l.
Nanospheres are yet other nanostructures for hemostasis
because of their ability to self-assemble, form ionic
crosslinking interactions, and self-emulsify to form
a uniform barrier without surfactants®. Apart from
exhibiting properties of high biocompatibility, novel
hollow nanospheres have proven to be excellent carriers
of antibacterial agents for biomimetic nanozyme-based
wound healing*'.

3.1.3. Active materials

There has been increased development in the search
of hemostatic materials for novel micro/nanostructure
design, especially in maximizing the potential of their
inherent physicochemical properties!®***l. Various active
hemostatic materials have helped optimize the design
and fabrication of different micro/nanostructures for
rapid hemostasis. Such active materials include natural
and synthetic polymers. Natural polymers all have
favorable biocompatibility, bioactivity, degradability, and
viscoelasticity, and they can be easily processed, and are
able to resemble the ECM of native tissues”.. However, the
disadvantages of natural polymers typically include low
mechanical strength, chemical instability in situ, and high
cost, among others. Synthetic polymers include artificial
materials, such as polyethylene glycol, polyvinyl alcohol,
and polyurethane. We have seen an increase in the use of
these materials due to their ability to avoid the drawbacks
posed by natural polymers. Synthetic polymers include
artificial materials, such as polyethylene glycol, polyvinyl
alcohol, and polyurethane. These materials have increased
in use due to their ability to avoid the drawbacks of natural

polymers. However, they still have the limitations of slow
biodegradation and high cost. Inorganic materials have
significant hemostatic effects, but they have also exhibited
potential metabolic toxicity.

Nevertheless, inorganic materials coupled with metals
as composites exhibit enhanced hemostatic potential.
These metals include calcium, silver, gold, zinc, iron, and
cerium!#*!. The enhanced hemostatic potential enables
the effects of active materials on the functional and
biological modulation of hemostasis.

3.2. Functional modulation

Functionalized materials has a significantly high potential
in regulating the events of the coagulation cascade!"”*"l.
The following examples as shown in Table 2 highlight
current clinical applications of such materials in micro/
nanostructure development, while the examples in Table 3
outline favorable characteristics of materials with inherent
hemostatic properties in novel micro/nanostructure
development for rapid hemostasis.

Although different materials stimulate hemostasis
and subsequent wound healing through various
mechanisms, they often operate in different in vitro and
in vivo settings due to the dynamic nature of the ECM
in vivo conditions**l. Additionally, the morphology of
selected materials is one of the main factors determining
the resulting hemostats functional properties, thereby
directly affecting subsequent micro/nanostructure-
mediated bioactive behaviors!'. For example, the fibrous
morphology of proteins such as collagen, elastin, and fibrin
allow for anisotropy of the ECM, promoting cell migration,
proliferation, and differentiation. Bone tissues made
from fibrous protein matrices are a practical reference.
Another reference to the importance of morphology is cell
alignment in muscle cells, which bestows these tissues their
tensile strength!®!. Materials commonly used to rebuild
natural ECM-like conditions include hyaluronic acid,
polyacrylamide, polyethylene glycol, and poly l-lactide
combined with natural compounds, such as collagen,
fibrin, and peptide amphiphiles™!. We can further utilize
these materials when designing micro/nanostructures
to support their biomimetic and hemostatic capabilities
further. For example, self-assembling peptide nanofibers
have the spatiotemporal abilities to incur rapid hemostasis
through the promotion of platelet concentration, thereby
accelerating the coagulation cascade through physical
modulation and surface patterning!**¢%¢.,

3.3. Biological modulation

Inlaid micro- and nanoscopic surface patterns and
hemostatic agents respond to the body’s biochemical
and mechanosensory signals via active biomolecules
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Table 2. Biomaterial-oriented clinical applications in micro/nanostructure development

Biomaterial

Major clinical applications

References

Synthetic degradable polyesters

Polylactic acid (PLA), polyglycolic acid (PGA) Sutures

[176,177)

Polyhydroxybutyrate (PHB), Polyhydroxyvalerate (PHV)

Long-term drug delivery; artificial skin; surgical patching materials

[178,179]

Synthetic degradable thermoplastic polymers

Polyester, PVC

Drug delivery; adhesives

[180-182]

Natural resorbable polymers

Collagen

Drug delivery; blood contacting devices

[183,184]

Fibrinogen, fibrin

Drug delivery; gene delivery; artificial skin; coating to improve cellular

[185-187]

adhesion; soft tissue augmentation; scaffold for blood vessel reconstruc-
tion; wound closure; hemostatic agent

Hyaluronic acid

Tissue sealant; cell delivery

[186,188-190]

Natural resorbable polysaccharides

Cellulose Drug delivery; wound dressing applications [191-193]
Chitosan Adhesion barrier; hemostat [194-198)
Alginate Hydrogel; wound dressing applications 153,55,199]
Gelatin Hydrogel; hemostat; wound dressing applications (7:124200]
Elastin Hemorrhage impedant [201-203]
Heparin Surgical mesh 1204-206]

Metals and alloys
Silver Antibacterial agents (131,140,168

Platinum, platinum-iridium Electrodes [207-209]

and mediators. Active biomolecules include immune are used to assist in the on-demand delivery of drugs

response mediators and growth factors, while mediators
include factors that affect stimulus responsivity,
mechanotransduction, and biophysical interactions. Thus,
incorporating micro/nanostructures releases these active
biomolecules for the proper cellular function throughout
the wound healing process.

Through current advances in elucidation of material
properties, we can see that there has been improved micro/
nanostructure functionality as hemostatic agents, including
the incorporation of various immune response mediators
in their design. These immune response mediators promote
cell differentiation and direct macrophage differentiation
to pro- and anti-inflammatory phenotypes!”®”!l.

Hemostatic agents incorporating micro/nanostructures
and immune response mediators can ensure a rapid
hemostasis promotion at the onset of application with
subsequent strong clot adhesion on the material application
site through promoting cell adhesion!***,

These factors mentioned above can also be applied to
developing and applying a sequential drug delivery system
for bioactive factors during hemostasis and wound healing
using the inherent properties of micro/nanostructures”>7,
Hydrogels incorporated with micro/nanostructures

in the form of small molecules, proteins, and various
nanoparticles”*71,

Recent research has focused on elucidating the effect
of implanting micro/nanostructures laden with growth
factors into composite/hybrid biodegradable hydrogels
and scaffolds. Studies have found that the responsivity
of micro/nanostructures creates a biomimetic effect
similar to the ECM in these fabricated hemostatic agents,
providing a secure means to manipulate a hemostat’s
bioactive properties. Rapid hemostasis in diabetic wounds
has been achieved by incorporating growth factors
including epidermal growth factor, transforming growth
factor-beta, fibroblast growth factor, vascular endothelial
growth factor, and platelet-derived growth factor!*>7¢7¢],
The controlled release of various growth factors and other
cellular components has also played a significant role in
tissue regeneration through their release and activation at
various phases of the wound healing process. Thrombin
generation has also been shown to be possible when laden
onto polyphosphate-crosslinked collagen scaffolds.

Controlled release via micro/nanostructures’ stimulus
responsivity is significant to hemostasis and wound
healing because stimuli external to the ECM, such as
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Table 3. Biomaterials for fabricating micro/nanostructures as hemostatic agents

Hemostatic material Hemostatic mechanism  Role in wound healing Limiting factors References
Synthetic polymers
Polyethylene Tissue adhesion Carrier for therapeutic agents Expensive; risk of residue [64210.211]
glycol (PEG)
Polyurethane Platelet aggregation; Antibacterial agent Slow biodegradation; poor biocompati- 212214
coagulation initiator bility; long polymerization time
Natural polymers
Collagen and Platelet activation Promotes cell growth and proliferation ~ Poor resistance to degradation; risk of (7.124,183,184,200)
gelatin immune response
Fibrinogen, Blood clot formation; Revascularization; promotes epidermal ~ Expensive; risk of immune response (185-187]
fibrin platelet aggregation thickness; promotes fibroblast and

fibrocyte proliferation

Hyaluronic acid

Tissue adhesion

Wound moisture; promotes fibroblast
migration and collagen deposition

Expensive; difficult to remove

[186,188-190]

Cellulose Platelet aggregation; Antibacterial agent Slow biodegradation [191-193]
coagulation factor
activation

Chitosan Platelet and blood cell Antibacterial agent; promotes gran- Poor biocompatibility; slow degradation ~ [141%]
adhesion and aggrega- ulation tissue formation; promotes
tion fibroblast proliferation

Alginate Tissue adhesion Wound moisture; promotes tissue gran-  Low mechanical strength and chemical =~ 1951

ulation and fibroblast proliferation stability
Curcumin Immuno-regulator Antibacterial agent; anti-inflammatory;  Poor bioavailability and absorption; [215-218]

antioxidant; anti-carcinogenic

chemical instability

Metal-containing materials

Silver (Ag) Platelet activation Antibacterial agent

Zinc (Zn) Blood cell aggregation Antibacterial agent; epithelization;
revascularization; promotes cell prolif-
eration

Iron (Fe) Blood cell aggregation; Revascularization

thrombin stabilizer
Cerium (Ce) Blood cell aggregation Anti-inflammatory
Gold (Au) Phagocytosis Enzymatic activity modulation,

anti-carcinogen

No biodegradation; difficult to remove;
toxic at high concentrations

[68,219-222]

[68,174,190,216]

[40,68,171,215,219]

[223-225)

[226-228]

electrical, light, and ultrasound stimulations, play a role
in determining stem cell behavior*’¥. Topographical
modifications can modulate monocyte attachment
and macrophage differentiation. Figure 3A shows the
polarization of naive (M0) macrophages to pro- (M1) or
anti-inflammatory (M2) phenotypes. Electrification at
different power densities for a sustained amount of time is
also an effective means of killing bacteria”’!. For example,
Figure 3B shows the bacterial killing rate in a topical wound
dressing as a function of the time of white light irradiation
(400-800 nm) at different power densities”!l.

Micro/nanostructures also have an inherent ability to
respond to stimuli, such as temperature, and translate these
cues to create a more dynamic 3D microenvironment. Thus,
photothermal and photodynamic therapy has been utilized
to initiate the onset of more rapid hemostasis and support

subsequent wound healing in hydrogels infused with
micro/nanostructures. Figure 3C shows the comparative
effects in hemostasis and subsequent wound healing
between a hemostatic agent made of quaternized chitosan, a
hydrogel, and a hydrogel infused with near-infrared (NIR)-
responsive micro/nanostructures””. These examples show
the significance of utilizing materials that allow for a more
fine-tuned response to stimuli in micro/nanostructures
when designing scaffolds seeded with growth factors and
cells that require controlled activation*!.

4. Micro/nanostructures in hemostatic
application
Appropriate material selection and fabrication techniques

are necessary for designing and fabricating scaffolds
and micro/nanostructures for rapid hemostasis. When
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Figure 3. Effect of biological modulation on hemostatic properties of micro/nanostructures. (A) Scatter plot of Topo Unit phenotype (average M2/M1
ratio) and macrophage attachment”. (B) Bacterial killing rate via white light irradiation (400-800 nm) at power densities 5, 10, 15, and 20 mW/ cm?"'.
(C) Graph and photographs of temperature enhancement and NIR irradiation on hydrogels™.

we combine materials with a specified fabrication
technique, we can easily manipulate aspects such as
the hemostat’s final macroscopic structure, mechanical
properties, and biological responses. To date, there have
been many accomplishments regarding scaffold and
micro/nanostructure fabrication techniques due to the
development and widespread use of novel technologies®*!,
In addition, current scaffold and micro/nanostructure
fabrication techniques, such as electrospinning, freeze-
drying, bioprinting, and decellularization, have been
proven to be effective strategies to create hemostats that
improve vascularization potential and immunomodulation
for a more biomimetic healing process®***%,

4.1. Electrospinning

Electrospinning has seen an increase in application
for hemostat development since the early 2000s. These
techniques have many applications across various fields,
mainly due to the inherent properties of scalability
and versatility that electrospinning offers for designing

novel hemostats. For instance, this approach has been
effectively applied to biosensing, drug delivery, soft and
complex tissue regeneration, and the fabrication of various
micro/nanostructures for hemostasis and wound healing
applications. Electrospinning allows for much control
over factors, such as fiber geometrical characteristics,
alignment, and architecture. In addition, the materials
used in the electrospinning and manufacturing processes
influence a nanofiber’s level of control in the modulation
of cell behaviors. Precise control in manufacture is
beneficial for applying micro/nanostructures in hemostat
development, as electrospun nanofibers play a vital role
in manipulating cell behavior via the efficient promotion
of cell adhesion, proliferation, and differentiation through
the high tunability of properties at the nanoscale*.

One example of a highly effective micro/nanostructure-
enabled hemostatic agent is the electrospun ultralight 3D
gelatin sponge consisting of continuously interconnected
nanofibers designed by Xie et al.”.. Owing to this nanofiber
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Figure 4. Electrospun micro/nanosurfaces for rapid hemostasis. (A) Scanning electron microscopy (SEM) image of microfibrin fibers adhered on
CNFs-coated cotton fibers after clot shrinkage®.. (B) Blood loss of hemostatic gauzes!®!. (C) Effect of nanofiber weight on mass and the time of bleed-

ing!®. (D) Effects of fiber diameter on mechanical properties®!.

structure, the sponge has low density, high surface area,
and compressibility potential, and feature an ultra-strong
liquid absorption capacity. In vitro assessments confirmed
the good cytocompatibility and biodegradability of
the fabricated hemostatic sponge, as well as its ability
to accelerate the formation of platelet embolism while
activating both the intrinsic and extrinsic coagulation
pathways in its mechanism of hemostasis. Further in vivo
assessments demonstrated the gelatin nanofiber sponge’s
ability to rapidly induce stabilization of blood clots, thereby
leading to the least amount of blood loss compared to other
commercialized products currently in use, thus proving
its advantage as a hemostatic agent”. Other studies on
nanofiber composites have also demonstrated the ability
of these structures to promote rapid hemostasis and
incur minimal secondary damage due to the composites’
intrinsic property of super-hydrophobicity and high user
tunability®”53,

Electrospun fibers allow nanoscopic-level control
over factors, such as fiber surface modifications and
architecture®®).  Along with material choice, this
control allows for tunability of the desired effect, such as
hemostatic capacity and adherence strength. For example,
Figure 4A shows a study by Li et al.?”), which described

the development of a CNF-coated cotton fiber gauze for
facile dressing removal after clot shrinkage. CNFs were
transferred onto the clot after facile detachment, resulting
in smooth cotton fiber and a hairy clot surface. Results
indicated that the CNF gauze helps form a gel-like clot
that properly seals wounds, while an open wound remains
under any control gauze.

Electrospinning techniques are also widely used and
valued for their submicron precision in fabrication in
the design of various hemostatic agents'®’. Submicron
precision in design is necessary because tunable factors,
such as morphology, mechanical, electrical, and magnetic
stimulations, influence the type and extent of cell-substrate
interactions in  micro/nanostructures”!.  Therefore,
electrospinning techniques can be used as a micro/
nanostructure fabrication method, which is a biomimetic
approach to hemostasis and wound healing to inhibit
undesirable side effects optimally™.

To this end, CNFs are used extensively because of their
conductive properties!!**#]. Furthermore, incorporating
CNFs into hydrogels allows for a biomimetic, electrically
conductive environment that provides a platform for
further development of controlled drug release and
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increased antibacterial activity!®). Platelets adhesion to
nanofibers also becomes possible, as does fiber weight
loss due to changes in pH throughout the wound healing
process. Such CNF-enabled wound dressings show
promise for synergistic therapy involving NIR-responsivity
via photodynamic chemotherapy for hemostasis and
subsequent wound healing. Aside from conductivity,
these wound dressings feature the beneficial properties
of biocompatibility and shape adaptability, all of which
allow for the maintenance of a bioactive and controllable
microenvironment "],

For example, in Figure 4B, blood loss is evaluated
for the prepared nonwetting CNF-kaolin composite
nanostructured wound dressing measured at 5 minutes
compared to the CNF gauze from a reference study'®. This
study used the commercial fast clotting gauzes (Celox and
QuickClot) and the standard gauze (control).

Other studies”®! have revealed that fiber weight
affects a hemostat’s time to achieve hemostasis (Figure 4C).
Similar studies have shown that fiber diameter affects
resultant mechanical properties such as Youngs modulus,
stress, strain, and toughness (Figure 4D). Through this
tunability and other features, such as low density and
high porosity, multifunctional electrospun aerogel fibers
have attracted much attention lately as a novel platform
for hemostat design'®>**. Along with excellent mechanical
properties and increased surface area, conscientious
material selection allows aerogel fibers the properties of
superhydrophobicity and excellent thermal insulation
performance, thus allowing them to be ideal candidates for
hemostat development!®!.

4.2. 3D printing

Even though we highly value electrospinning techniques
for manufacturing effective hemostatic agents, it is not
the only technique applied in hemostat design. Additive
manufacturing techniques, such as 3D printing, have
favorable results in fabricating various hemostatic agents,
particularly those incorporating micro/nanostructures
into their design. These hemostatic agents promote
hemostasis and support wound healing utilizing topically
administered methods, intracavitary, or intravenous
applications. Popular 3D-printed hemostatic agents include
gels, adhesives, sealants, patches, sponges, scaffolds, and
foam-creation products. We favor porous agents, such as
scaffolds and hydrogels, because of their ability to disrupt
scar formation via their architecture!®*?. Chitosan-PLA
composites are highly favored materials for 3D printing
because of their ease in printing micro/nanosurfaces
(Figure 5A). Fabricated hemostatic agents can facilitate
cell attachment, promoting tissue regeneration through
printed micro/nanostructures and surface patterning.

Due to inherent fabrication properties, such as incurred
stress and adhesion levels, the hemostatic agents may
induce different hemostasis mechanisms. Such mechanisms
proceed either by mechanical promotion, augmentation of
the blood clotting cascade, binding tissues or blood vessels
via adhesion kinetics, or preventing leakage from blood
vessels®l. However, all resultant 3D-printed hemostatic
agents feature properties beneficial to rapid hemostasis,
such as porosity, immunomodulation, and a pro-coagulant
effect based on material selection””*"..

Cryogenic 3D-printed hydrogel scaffolds are one type
of hemostatic agent currently manufactured for rapid
hemostasis and subsequent diabetic and chronic wound
healing support. Other hemostats include porous Ga-
MBG/CHT composite scaffolds of various sizes fabricated
via the interaction of NH, and OH groups of CHT with
silanol groups of Ga-MBG.

3D printing of hemostatic agents allows the resulting
construct to undergo a series of macroscopic compression
and expansion, with little to no incurred damage. The
sponge’s original morphology can be quickly restored after
being subject to varying degrees of compression!. Similarly,
several studies demonstrate the compression stress—strain
curves of freeze-dried 3D-printed honeycomb structures
with cellulose concentrations of 4, 5, and 6 wt%*\.

By incorporating micro/nanostructures, such as
micro/nanoparticles, into the fabricated scaffold dressing,
promoting hemostasis in these hydrogels becomes possible
through the release of bioactive exosomes and the sustained
proliferation and migration of cells!"™. 3D printing also
affects the blood clotting kinetics of composite scaffolds, as
shown in Figure 5B.

Another hemostatic agent developed using 3D printing
technologies is scaffolds combined with hybrid hydrogels
laden with microparticles of chitosan methacrylate
(CHMA) and polyvinyl alcohol (PVA). This material
combination allows for the fabricated scaffold’s mechanical
properties tunability, thus imbuing the resulting agent
with the most optimal viscoelasticity and shear thinning
characteristics for spatiotemporal manipulation to ensure
rapid hemostasis. A CHMA-PVA mixture also supports the
growth of cells. It provides the inlaid microparticles with
the necessary responsivity to differentiate these cells via
the spatiotemporal translation of chemical, physical, and
bioactive cues throughout the wound healing process!'!l.

Using  biodegradable 3D-printed polyurethane
hydrogel-scaffold composites (G-DLPU3) also helps
induce hemostasis and reduce the wounded area over
time"?. Adhesion kinetics of hemostatic glues, such
as cyanoacrylate (CA) and other rigid adhesives (TA),
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Figure 5. 3D/4D printing of micro/nanosurfaces for rapid hemostasis. (A) Schematic illustrations of 3D/4D-printed micro/nanosurfaces using PLA and

chitosan!. (B) Blood clotting kinetics at different times!'**l.

strengthen over time when exposed to blood. These
inherent properties of hydrogels allow for a more rapid
hemostasis when combined with 3D-printed scaffolds
laden with micro/nanosurface modifications!*.

3D printing offers a scaffold-free approach to
developing artificial human skin patches for hemostasis
and wound healing applications!'®. Chitosan-based
inks are primarily used for this method of tissue
regeneration. This is because chitosan-based solutions
support cell proliferation and differentiation and allow
for tunability and mimicry of the ECM. Because of the
structure and composition of chitosan, slow gelation

rates and weak mechanical strength are drawbacks to
using this natural polymer in a scaffold-free hemostatic
approach. However, chitosan-based materials can be
coupled with other materials to improve the possibility of
a more substantial crosslinking and increase mechanical
strength(1%,

In addition to 3D printing technologies, recent years
have seen the advancement of 4D printing, which adds
multidimensionality through time-sensitive interventions
via material selection®”. We can utilize programmed
therapeutics to assist the bodys natural regenerative
responses in combined printing techniques!”.
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4.3. Combined techniques

Current technological advancements have allowed experts
in the field of tissue engineering to expand the applicative
range of various micro/nanostructure-hydrogel constructs
to a much more comprehensive range of applications.
This rapid expansion in applications has mainly been
possible due to the breakthrough discovery involving the
design of stimuli-responsive nanocomposite hydrogels,
which biomimetically respond to internal and external
biophysical and biochemical stimuli from the macroscopic
to the nanoscopic scale!'*. Thus, additive manufacturing
and electrospinning techniques are currently the potent
and practical tools for tissue engineering applications,
especially in manufacturing micro/nanostructures for
rapid hemostasis. However, when combined, additive
manufacturing and electrospinning techniques” allow for
the possibility and the ease of selecting different types of
materials to enable the fabrication of specifically designed
complex multiscale structures with multiple mesh layers
and fiber densities (Figure 6A).

The material-cell biointerface is a significant aspect
in combined micro/nanosurface modification methods
for hemostat fabrication. This is because the mechanical
interactions between a cell and its surrounding
biochemical and biophysical environment influence cell
behavior and function. When combining 3D printing
with electrospinning, modifications are possible due to
the choice of material in fabrication, solution viscosity,
and internal mechanochemical interactions. Different
3D-printed substrates, such as steel, plastic, and glass,
demonstrate varying levels of shear strength concerning
displacement when a force is applied, impacting cellular
kinetics. We can see mechanical-induced deformation due
to the stretching and relaxation of an alginate hydrogel
on the 3D-printed scaffold shown in Figure 6B. Such
electrospun fiber mats can also be inlaid with cells or
particles before incorporation into the 3D-printed scaffold
to tune the desired effect of the resultant hemostat. This
further enhances a fabricated agent’s hemostatic capacities
by preventing blood loss and reducing hemostasis
time!*®1l. As shown in Figure 6C, an electrospun nanofiber
mat is combined with a 3D-printed scaffold to create a 3D
nanofibrous scaffold for rapid hemostasis'®*.

Other examples showing the beneficial results of
combined fabrication include developing -electrospun
multiwall carbon nanotubes grafted to a 3D-printed
oxidized regenerated cellulose gauze. Hemostatic evaluation
of a similar electrospun sponge can be seen in Figure 6D.
Meanwhile, Figure 6E demonstrates how the morphology
of a gelatin nanofiber sponge can be quickly restored after
undergoing different degrees of compression'”. The density
and diameter of electrospun fibers on this 3D-printed

scaffold determine overall porosity. Porosity is directly
proportional to water absorption levels. Therefore, this
nanofiber sponge has a higher water absorption percentage
than a less porous hemostatic membranous agent.

These recent examples show that the field of tissue
engineering has significantly benefited from the combined
use of 3D printing with electrospinning techniques. These
combined technologies have allowed the fabrication of
highly tunable hemostatic agents such as scaffolds inlaid
with composite micro/nanostructures. Depending on
the choice of fabrication techniques and materials, these
agents can be fabricated with nanoscopic precision in
their architecture, thus affecting their biophysical and
mechanical properties'**l. Customized modules can also
be fabricated in a patient-specific manner, thus helping
to accelerate the natural wound healing and regenerative
process on a case-by-case basis.

Every fabrication technique has advantages and
limitations, so we must consider these aspects and
appropriately select materials when designing micro/
nanostructures for rapid hemostasis. Aside from 3D/4D
printing, we can combine other additive manufacturing

techniques with electrospinning to create micro/
nanostructures with highly tunable characteristics.
These techniques include extrusion methods!'%!%)

stereolithography (SLA)"'", and digital light processing
(DLP)111, These fabrication methods are not as prevalent
as inkjet 3D printing because most of them require the
addition of processing additives, such as photoactive
resins, which are not biocompatible and may damage
the body. Furthermore, some fabrication techniques are
incompatible with standard and valuable hemostatic
materials. However, regardless of these drawbacks,
extrusion methods, SLA, and DLP offer the advantage of
high-resolution printing of features on the nanoscale level,
along with other fabrication-specific benefits.

Extrusion-based printing methods use pneumatic air
pressure or mechanical forces, which are generated using
pistons or screws, respectively, to carve out user-defined 3D
patterns from bio-inks. These printing methods fabricate
chitosan-based bio-inks for 3D scaffold construction!®.
Gallium-based inks also influence blood clotting, enhance
thrombin generation, and induce antibacterial activity!''?l.
Extrusion methods have been used for developing novel
gallium-containing chitosan-based composite scaffolds as
hemostatic agents!''?..

SLA is a laser-based printing technique that uses laser
pulses to produce high-resolution, high-viscosity droplets
on the printing surface!"'*. Though the operating speed of
SLA is slower compared to other printing methods, cells
printed via this method experience less mechanical stress
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Figure 6. Combined methods of micro/nanosurface modification manufacture for rapid hemostasis. (A) 3D/4D printing and electrospinning techniques
can be combined to achieve beneficial micro/nanosurface manipulations in hemostat fabrication!">!. (B) SEM images of electrospun nanoclay membranes:
polyvinylpyrrolidone electrospun membrane (PVPEM), halloysite electrospun membrane (HEM), and kaolinite electrospun membrane (KEM)!'"411. (C)
Advanced fabrication for electrospun 3D nanofiber aerogels and scaffolds®. (D) Macroscopic images and subsequent evaluation of the hemostatic capac-
ity of different electrospun sponges!"””.. (E) A nanofiber sponge undergoing different degrees of compression. Water absorption and porosity percentages
between the sponge and a membrane are compared!”..

in fabrication, and thus, they have superior viability!*, DLP-based printing technologies utilize a projector
Therefore, SLA is used to print high-fidelity hydrogels!!”’ to project the image of an object onto a free radical
and highly complex nanocrystal composite hemostats photosensitive liquid resin for high printing precision!!”).
given the high tunability of the structure made by SLA!"!¢!, DLP is commonly used to fabricate hemostatic agents for
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printing functional living skin. This method effectively
incorporates living cells into hydrogel-based bio-inks to
create topical wound dressings with excellent hemostatic
potential and mechanical strength. This fabrication
approach supports cell proliferation, migration, and
subsequent skin regeneration by forming a suitable
microenvironment mediated by air, moisture, and
nutrient exchange!''®l. Additionally, when combined with
DLP printing, electrospun nanofiber-based scaffolds can
provide cells with 3D microenvironments and biomimetic
fibrous structures that promote tissue regeneration, thus
enhancing the structural and bioactive effects of the
resultant 3D-printed scaffold*.

Soft lithography is another fabrication technique
utilized with other fabrication methods and additive
manufacturing!"'>!?l. Soft lithography techniques can
be utilized to create highly biomimetic, precise, and
complex micro/nanostructures using popular hemostatic
materials¥’l. Thus, soft lithography methods are primarily
employed in fabricating organ-on-a-chip platforms for drug
development and personalized medicine applications!*!
rather than hemostats adapted for clinical use!'*!l.

5. Hydrogels and cryogels as hemostats

Cryogels microspheres are one of the promising smart
hemostatic materials that can deal with noncompressible
bleeding within seconds. Such cryogels are reported to
absorb blood within seconds. Zhan et al. reported the
fabrication of cellulose@polydopamine/Thymol (Tm/
Cell@PDA) cryogel microspheres (400 + 15 pum) with
shark skin riblet-inspired wrinkled surface to prevent
acute bleeding within 10 seconds of application*?. The
fabricated cellulose microsphere could absorb blood six
times its weight. Moreover, the microspheres could seal
blood loss without applying pressure. A controlled freeze-
drying technique customized the surface topology of the
microspheres. Polydopamine (PDA) was incorporated
into the microspheres by in situ polymerization rendering
the microspheres tissue binding ability. Thymol in or on
the microspheres contributed to the antibacterial activity.
Upon application of the microspheres on acute bleeding,
plasma is instantly drained, and blood components like
RBCs, platelets, and coagulation factors are concentrated
to accelerate the blood coagulation pathway. Wang et al.
developed a hyaluronic acid-polyurethane (HA-PU)
hybrid cryogel that is highly efficient in rapid hemostasis
and wound healing. The PU emulsion and oxidized HA
were autonomously cross-linked to form the hybrid cryogel
at -20°C through hydrazine bonding. The surface of the
cryogel comprises macroporous structures of ~220 pm and,
upon drying, could shrink up to 1/7 of its original volume.
Due to its shape-memory property, the shrunk cryogel

could rapidly swell by 16 times upon blood absorption.
The application of the cryogel was closely associated with
the activation of the endogenous coagulation system,
leading to hemostasis within 2 minutes of application?],
Huang et al. reported the fabrication of numerous high-
strength composite cryogel hemostats comprising PVA,
carboxymethyl chitosan (CMCS), and dopamine (DA)
(PVA/CMCS-DA). The variation in the concentration of
the DA resulted in dramatic changes in the hemostatic
ability of the prepared cryogel. The cryogel incorporated
with 6 mg of DA exhibited favorable hemostatic ability by
promoting the adhesion and activation of blood cells!**.,
Tengetal. used theice templating method to fabricate shape-
recoverable gelatin/laponite nanoclay-based macroporous
hydrogel hemostat. The fabricated macroporous hydrogel
showed precise clotting ability as a noncompressible
hemostat on liver bleeding. The rapid hemostasis is
attained by the ability of the hydrogel to absorb blood,
subsequently concentrating the coagulation factors. The
incorporation of laponite nanoclay enables the activation
of the endogenic coagulation cascade and accelerates
thrombus formation. The prepared macroporous hydrogel
displayed high affinity for blood cell in an irregular
fashion. The irregular aggregation of the blood cells was
linked to the interconnected porous structure with a high
volume expansion ratio. The affinity of the hydrogel for
the blood cells has primarily resulted from the anisotropic
charge distribution of the nanoclay. The anisotropic charge
distribution greatly enhances concentrating clotting factor,
ultimately shortening blood coagulation time!*!. An
antibacterial cryogel of sericin-methacryloyl/silver ions
(SMC@Ag) was fabricated by Zhu et al. based on freeze
polymerization of mathacryloyl-modified sericin and
the in situ reductions of silver ions. The Ag-incorporated
interconnected micropores of the cryogel allows for high
blood absorption and antibacterial activity in the cryogel.
The hemostatic efficiency of the fabricated cryogel was
better than commercial gelatin sponge in various in vivo
set up, including rat tail amputation, liver injury, and
femoral artery injury models. The hemostatic activity of
the SMC@Ag cryogel was attributed to its ability to activate
the coagulation pathway and enhancing the platelet
adhesion during the coagulation process!*. Injectable,
antibacterial cryogel of chitosan (CS), oxidized gallic acid,
and hemin (HE) was fabricated by Zhang et al. with high
swelling efficiency upon application to the bleeding wound.
Hemostatic efficiency of the cryogel was attributed to its
high absorbency, blood cell and platelet adhesion ability,
and shape recovery. The antibacterial property of the
cryogel was observed upon exposure to NIR irradiation.
The application of the cryogel significantly reduced
inflammation, improved angiogenesis, and reduced wound
healing timel'””). Bai et al. developed a multifunctional
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single-component polymeric hydrogel of dopamine-
modified poly(L-glutamate) with graphene oxide for rapid
hemostasis and scarless wound healing. The hydrogel
formation relied on oxidative catechol-crosslinking
and catechol-carboxyl hydrogen bonding interactions.
The resulting negative charge in the hydrogel rendered
multifunctionality, including resistance to temperature,
urea, and salt. Additionally, the hydrogel showed self-
healing ability, injectability, desired adhesiveness, and
detachability. The polymeric hydrogel could stop bleeding
with 1.4% blood loss within 12 seconds!"*l. An analysis
of advantages and disadvantages of some other reported
hemostats is given in Table 4.

6. Antimicrobial hemostats

An ideal hemostat with excellent antimicrobial properties
is highly desirable for wound healing applications.
Hemostatic materials can be functionalized with various
antimicrobial drugs, metal nanoparticles, cationic
antimicrobial polymers, or antimicrobial peptides for
long-term antimicrobial effect?!*l. Most antimicrobial
agents kill the bacteria through cell wall disruption,
membrane perforation, reactive oxygen species (ROS)
generation, or ion leakage!'*’l. Photothermal antimicrobial
agents exhibited hyperthermia-induced ROS generation
and killing of bacterial pathogen!!. For example, silver
nanoparticle-doped  alginate/chitosan hydrogel has
been shown to promote diabetic wound healing, rapid
hemostasis, and strong anti-bactericidal efficacy against
Escherichia coli and Pseudomonas aeruginosa'.

Similarly, cyclohexane-modified N-halamine-doped
chitosan sponge exhibited superior antibacterial effect
within 10 minutes against Staphylococcus aureus and
E. coli. Moreover, the fabricated sponge showed an
extremely low blood clotting index with higher platelet
adhesion activity****. Zhou et al. reported that a self-
assembled antimicrobial peptide (jelleine-1) incorporated
soft hydrogel to promote rapid hemostasis in a mouse
liver injury model with fast blood clotting properties.
The injectable hydrogel also displayed controlled platelet
activation, adhesion, and blood coagulation owing to
the presence of the J-1 peptide. Moreover, the fabricated
hydrogel also showed substantial antibacterial properties
against a broad range of bacteria (methicillin-resistant S.
aureus [MRSA] and E. coli) and fungi (Candida albicans)!'*.
Therefore, antimicrobial hemostats can be used as a
potential alternative to commercial hemostats and provide
a favorable environment for platelet adhesion and new
tissue formation with robust antimicrobial properties!'*.
Chen et al. reported the fabrication of adhesive, self-
healing, and antibacterial hydrogel of gelatin methacrylate,
adenine acrylate, and CuCl, for diabetic wound healing.

The self-healing and adhesive properties were attributed
to the hydrogen bond and metal-ligand coordination
provided by the copper ion and carboxyl groups. An
increased concentration of Cu?* in the fabricated hydrogel
was reported to inhibit the growth of S. aureus and E. coli
within 3 hours of incubation. The antibacterial efficiency
of the hydrogel was contributed by the ability of the Cu**
to destroy bacterial cell membranes and alter protein and
enzyme structures!*”. Yu et al. developed supramolecular
thermo-contracting adhesive hydrogel effective against
MRSA infection during wound healing. The antimicrobial
hemostat was fabricated via host-guest interaction using
quaternized chitosan-graft-p-cyclodextrin, adenine, and
polypyrrole nanotubes. The multifunctionality of the
developed hemostat could achieve significant hemostasis
and subsequent wound healing within 24 hours post-
surgery!®®. Liang et al. reported the development of
multifunctional hydrogel dressing comprising numerous
functional materials, rendering it great adhesive property,
antibacterial efficiency, antioxidative ability, conductivity,
pH/glucose dual-responsive drug release properties, and
effective against athletic diabetic foot wounds!*!. All the
hydrogels mentioned above hold numerous possibilities
for clinical application and improvement in the healthcare
unit.

7. Conclusion

This review expounds various ways of utilizing micro/
nanostructures for hemostatic applications in different
cases, including civilian settings and instances of heavy
and complex surgeries'®. Recent advances in 3D
printing technologies have facilitated the fabrication
of more precise scaffolds for this purpose via various
micro/nanostructures, including nanotubes, nanofibers,
micro/nanoparticles, micro/nanospheres, and adhesive
powders/gels. We reviewed how different modeling
methods, printing materials, and preparation techniques
benefit in unison with 3D and 4D printing technologies.
Although electrospinning is the most common pairing
for 3D/4D printing, it is also possible to combine these
printing techniques with others such as extrusion
methods, soft lithography, SLA, and DLP-based methods
in the construction of novel micro/nanostructures for
rapid hemostasis. Such techniques and applications have
enabled advances in developing and prototyping hydrogel-
based microfluidic chips?", composite hydrogel bio-
inks, organs-on-chips, and novel materials for hemostatic
applications!*4,

We have seen the value of a successful active material
and micro/nanostructure choice for hemostat fabrication.
The purpose of such a successful material is threefold: (i) to
support and enhance the tissue regeneration process at the
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wound or defect site; (ii) to degrade in situ with minimal
adverse effects; and (iii) to eventually get replaced with the
body’s own newly generated tissue. Therefore, to increase
the biofunctional potential of these novel agents, there is
a need to fabricate scaffolds that can recreate the micro/
nanoscale topographical landscape while considering
the role of bioactive factors that react to cues from the
extracellular environment®!'*!*!, For this purpose, we have
specifically designed and seamlessly integrated micro/
nanostructures into multilayered scaffolds because of
their inherent ability to closely reflect the body’s natural
physiologic processions in injured tissues*’.

To further elucidate these bioactive interactions between
material properties and behavior, computational modelsand
high-throughput experimentation can serve as a potential
tool to accelerate the development of high-performance
materials and confirm micro/nanostructure interactions in
the cell-matrix interface!'*"'*2l. Other applications include
using a nonlinear finite element code analysis to conduct
simulations to study the mechanics of submicron pillars
and cell interaction when considering different substrates
as potential high-performance materials'®'**l,

One of these high-performance materials for
hemostasis and wound healing is hydrogels. Hydrogels
have the inherent advantages of injectability, self-healing,
and remodeling. We can combine them with printed
micro/nanostructures for rapid hemostasis promotion
and an overall biomimetic wound healing effect. When
designed together with stimulus-responsive capabilities,
such as pH and ROS sensitivity*!, these novel hydrogel
constructs gain the ability to realize sequential and on-
demand drug delivery”*!'*. Additionally, the surface
topographical features and chemical composition of
micro/nanostructures, such as biodegradable CNFs, can be
further documented to develop advanced design strategies
for more effective hemostatic products with on-demand
drug delivery capabilities for future clinical use®”..

This sequential and on-demand drug delivery has been
made possible by recentadvancementsin tissue engineering
and regenerative medicine and elucidating the beneficial
effects of micro/nanostructures. Recently, we have seen
much growth in the development of multifunctional
intelligent ~ materials for advanced therapeutic
applications!*!. Currently available technologies allow us
to accurately and precisely mimic distinct characteristics
in the in situ microenvironment using different materials
and development methods for user-tunable micro/
nanostructures. In vivo tissue architecture is very complex
and dynamic, as there is much interconnectivity between
cells and specific components of the extracellular matrix'®!,

Therefore, to achieve the best biodegradable and bioactive
effects compatible with typical human physiology, it is
imperative to elucidate the structure and composition of
the ECM to develop more efficient and effective micro/
nanostructures!**.

8. Future prospects

There are many advantages to utilizing micro/nanostructures
for hemostasis and wound healing applications. We can
combine novel technologies such as 3D/4D printing and
electrospinning to fabricate biomimetic hemostatic agents
that assist the body’s natural regenerative responses when
it cannot do so on its own. Because of this, 3D/4D printing
techniques are a significant step in advancing from generalized
administration of medications and therapy to personalized
therapy for hemostasis and wound healing applications”*”..

We can potentially bring the benefits of efficient and
effective cellular and molecular healing techniques via
micro/nanostructures to civilian and surgical settings
where wounds, surgery, and even hemophilia are relatively
common. We will continue to develop more effective and
targeted hemostatic agents for more biomimetic, patient-
specific therapies using the combined technologies, active
biomolecules and mediators, stimulus responsivity, and
biophysical signaling applications available to supplement
the design of micro/nanostructures.

However, there remains a shortage of information on
the mechanisms of action and progression of in situ cell
behavior, mainly owing to the shortage of detection tools
to precisely monitor cell behavior in internal conditions.
Thus, research teams are striving to enable the detection
of bio-relevant analytes for such signaling purposes by
incorporating micro/nanostructures into sensing systems.
For example, a 2020 study by Garcia-Astrain et al.'**!
described the potential of using a surface-enhanced
Raman scattering (SERS) spectroscopy within a plasmonic
hydrogel-based, 3D-printed scaffold to this end. These
SERS-active scaffolds allow for the 3D detection of model
molecules and biomarkers and offer great flexibility in
selecting plasmonic nanoparticles. Additionally, this
study proved the possibility of using these plasmonic
scaffolds for SERS sensing of cell-secreted molecules over
extended periods by detecting the biomarker adenosine
for biosensing applications!™*l. Other studies have
highlighted different methods of triggering local sensing
based on micro/nanostructures’ stimulus-responsive
capacities using external signals, such as light via laser!*’),
temperature®, ultrasound, or an applied magnetic field.

Such a biosensing method is crucial to advancing
wound healing technologies because foreign-body
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responses caused by implanted materials are significant
obstacles to fabricated agents and devices!*'*". We must
also consider the dynamic environment of the ECM and
the ways changes in fabricated micro/nanostructures
can potentially affect the physical, biochemical, and
bioactive properties of biodegradable materials in
in situ scenariosl. Nevertheless, the bodys natural
immunomodulating responses still present significant
obstacles in developing implantable materials and medical
devices, especially for safe and effective clinical usel®?.
Fortunately, advances in the hemostatic mechanisms of
micro/nanostructures have provided strategies to resist
the foreign-body response. Novel elucidations will serve to
develop novel strategies to further mitigate such negative
responses in the future!™*.
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